Choline is a water-soluble nutrient.[1][2][3][4][5] It is usually grouped within the B-complex vitamins. Choline generally refers to the various quaternary ammonium salts containing the N,N,N-trimethylethanolammonium cation. (X− on the right denotes an undefined counteranion.)
The cation appears in the head groups of phosphatidylcholine and sphingomyelin, two classes of phospholipid that are abundant in cell membranes. Choline is the precursor molecule for the neurotransmitter acetylcholine, which is involved in many functions including memory and muscle control.
Some animals must consume choline through their diet to remain healthy. To humans, choline is not an essential nutrient unless the diet is also devoid of methionine and folate.[2] It is used in the synthesis of components in cell membranes. The 2005 National Health and Nutrition Examination Survey stated that only 2% of postmenopausal women consume the recommended intake for choline.[6]
Research
A 2010 study tested postmenopausal women with low estrogen levels to see if they were more susceptible to the risk of organ dysfunction if not given a choline-sufficient diet. When deprived of choline in their diets, 73% of postmenopausal women given a placebo developed liver or muscle damage, but this was reduced to 17% if estrogen supplements were given. The study also noted young women should be supplied with more choline because pregnancy is a time when the body's demand for choline is highest. Choline is particularly used to support the fetus's developing nervous system.[6]
Involvement of choline in long-term health and development of clinical disorders, such as cardiovascular diseases, cognitive decline in aging and regulation of blood lipid levels, has not been well-defined, and remains under research in 2015.[10]
Choline and its metabolites are needed for three main physiological purposes: structural integrity and signaling roles for cell membranes, cholinergic neurotransmission (acetylcholine synthesis), and a major source for methyl groups via its metabolite, trimethylglycine (betaine), which participates in the S-adenosylmethionine (SAMe) synthesis pathways.[16][17]