[b][size=14pt]Pseudologic Report: Comparative MA Crystal Analysis[/size][/b]

[i]Filed by:[/i] Andrew[i]Analyst:[/i] GPT Unit – CrystalOps

[hr]

[b][u]1. Taste Evaluation[/u][/b]
[color=navy]Old Batch:[/color] Distinct
chemical taste, immediate tongue
response
[color=green]New Batch:[/color] No
perceptible taste

[b]→ Inference:[/b] Lack of taste in the New Batch suggests either higher purity or non-sensory inert cutting agents. The Old Batch likely retained trace volatile impurities or was incompletely washed.

[hr]

[b][u]2. Volatility & Thermal Behavior[/u][/b]

[color=navy]Old Batch:[/color] Climbed bowl walls, left residue, split on heating [color=green]New Batch:[/color] Remained centered, minimal residue, cohesive structure

[b]→ Inference:[/b]

Bowl creep and splitting point to volatile byproducts or internal lattice stress (fast/dirty evap). New Batch shows stability – possible cleaner synthesis or slower drying.

[hr]

[b][u]3. Recrystallization Profile[/u][/b] Both batches produced [i]crisp-edged crystals[/i] on recrystallization.

[b]→ Inference:[/b]
Suggests a solid crystal lattice in both;
not heavily cut with oils or noncrystallizing agents.

[hr]

[b][u]4. Directional Thermal Drift (BDC Test)[/u][/b][i]Setup:[/i] Heated flat at Bottom Dead Center, aligned North (0° reference)

[table]
[tr][th]Batch[/th][th]Drift Direction[/th]

[th]Angle[/th][th]Compass Bearing[/th][/tr]
[tr][td]Old Batch[/td][td]NWW[/td][td]-25°
[/td][td]≈335°[/td][/tr]
[tr][td]New Batch[/td][td]SSW[/td][td]-50°
[/td][td]≈310°[/td][/tr]
[/table]

[b]→ Inference:[/b]

Directional drift may reflect polymorphic difference or charge distribution. Could indicate alternate synthesis route (P2P vs pseudo), trace metal contaminants, or crystallization variance.

[hr]

[b][u]5. Summary Hypothesis[/u][/b]
[list]
[li][color=green]New Batch is likely

purer[/color], more thermally stable, and less contaminated[/li]
[li]Drift angle change points to a
[i]different crystal structure or internal energy signature[/i][/li]
[li]Old Batch behavior consistent with fast-evap or dirty precursor use[/li]
[/list]

[hr]

[b][u]Recommendations:[/u][/b]
[ul]
[li]Use your [i]UV torch[/i] on future
batches for fluorescence testing[/li]
[li]Heat on a mirrored or glass surface to
observe vapor trails more precisely[/li]
[li]Log "Angular Drift Index" to profile
batch signatures over time[/li]
[li]Inspect crystals under polarized light

(birefringence test) when possible[/li] [/ul]

[hr]

[i]Filed for record. Data to be included in the Batch Integrity Subsection. Feedback welcome.[/i]