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ABSTRACT
Neural signals are everywhere just like mobile phones. We
propose to use neural signals to control mobile phones for
hands-free, silent and effortless human-mobile interaction.
Until recently, devices for detecting neural signals have been
costly, bulky and fragile. We present the design, implemen-
tation and evaluation of the NeuroPhone system, which al-
lows neural signals to drive mobile phone applications on the
iPhone using cheap off-the-shelf wireless electroencephalo-
graphy (EEG) headsets. We demonstrate a brain-controlled
address book dialing app, which works on similar princi-
ples to P300-speller brain-computer interfaces: the phone
flashes a sequence of photos of contacts from the address
book and a P300 brain potential is elicited when the flashed
photo matches the person whom the user wishes to dial.
EEG signals from the headset are transmitted wirelessly to
an iPhone, which natively runs a lightweight classifier to dis-
criminate P300 signals from noise. When a person’s contact-
photo triggers a P300, his/her phone number is automati-
cally dialed. NeuroPhone breaks new ground as a brain-
mobile phone interface for ubiquitous pervasive computing.
We discuss the challenges in making our initial prototype
more practical, robust, and reliable as part of our on-going
research.
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1. INTRODUCTION
Like mobile phones, neural signals are ever present in our

everyday lives. Given the recent availability of low-cost wire-
less electroencephalography (EEG) headsets [2, 11, 12] and
programmable mobile phones capable of running sophisti-
cated machine learning algorithms, we can now interface
neural signals to phones to deliver new mobile computing
paradigms—users on-the-go can simply “think” their way
through all of their mobile applications.

In this paper, we present the design, implementation and
evaluation of the NeuroPhone system (see video demo [1]),
a brain-mobile phone interface based on the wireless Emotiv
EPOC EEG headset [2] and the iPhone. We demonstrate a
brain-controlled address-book dialing app, which works on
similar principles to a P300-speller [7] brain-computer inter-
face: the phone flashes a sequence of photos of contacts from
the address book and a P300 brain potential is elicited when
the flashed photo matches the person whom the user wishes
to dial. We also demonstrate a version of the same app which
detects the much larger and more easily detectable EEG sig-
nals triggered by the user winking their eyes when the target
photo appears. This “wink”-triggered dialing works robustly
in noisy conditions. The P300, or “think”-triggered, dialer
is very promising but at present less reliable. One could ar-
gue that other “hands off” types of actuation such as voice
recognition is more suitable an interface to mobile applica-
tions. However, our goal is to best understand how firing
neurons can drive mobile applications and what the current
limitations in the state of the art are when using off-the-shelf
wireless EEG headsets and phones.

In this paper, we discuss our broader vision of a brain-
mobile phone interface and then present the initial design,
implementation, and evaluation of the NeuroPhone system.
Our initial results look promising showing that the iPhone is
capable of processing raw neural signals and classifying the
P300 using a cheap, noisy commercial EEG headset. How-
ever, a number of challenges remain in developing a practical
and robust brain-mobile phone interface not only capable of
working in controlled laboratory settings but also out in the
wild. Addressing these challenges is part of our on-going
research.

2. BRAIN-MOBILE PHONE INTERFACE
We envision that many mobile applications can be rein-

vented; for example, instead of hand dialing your friend Tim
while driving you can simply wink or think of him while your
phone displays your contacts. We also imagine new many-to-
one mobile applications; for example, a teacher of a foreign



language is interested in seeing exactly how many students
actually understood the last question she asked. The stu-
dents are all wearing EEG headsets and their data is being
streamed in real-time to the teacher’s mobile phone. She
simply takes out her mobile phone and it gives her up to the
second statistics on each of her students. She quickly glances
at the aggregate class statistics and realizing that the stu-
dents really did understand her difficult question, proceeds
with her lecture. Other scenarios may soon be possible; for
example, a person enters a room (e.g., bar, club, meeting,
classroom) and instantly has a sense of the overall emo-
tional state of the space (i.e., happy, tension, frustration,
sad, bored, hostile). There is prior work classifying EEG
signals into different bands of frequencies corresponding to
different emotions such as meditation and activity [9]. In ad-
dition, the Emotiv headset [2], which is designed primarily
for gaming purposes, is also capable of detecting certain fa-
cial expressions (e.g., smile, laugh, shock – eyebrows raised,
anger – eyebrows furrowed) and non-conscious emotions. If
one could read the emotional state of people moving through
a building then the notion of mood music would take on a
literal sense.

Many practical challenges remain to make this vision a
reality. For example, research-grade EEG headsets [4] are
expensive (e.g., tens of thousands of dollars) but offer a much
more robust signal than the cheaper (e.g., $200-$500) head-
sets. As a result there is a significant amount of noise in the
data of the cheaper headsets, requiring more sophisticated
signal processing and machine learning techniques to classify
neural events (e.g., P300). However, the cheaper headsets
provide an encrypted wireless interface between the headset
and computer allowing for mobility but complicating the de-
sign of a clean brain-mobile phone interface. Mobile phones
are not designed to support continuous neural sensing ap-
plications. The energy cost of continuously streaming raw
neural signals over wireless and running classifiers on the
phone is challenging. We imagine that brain-mobile phone
interfaces will be used when and where the user is: walking
in a busy street, in a car, on a bicycle, while shopping, sitting
quietly in a library, etc. We show that many of these use
cases present significant noise artifacts in the data compli-
cating the design of a practical brain-mobile interface today.
Filtering out components of the signal associated with arti-
facts (e.g., neural signals associated with walking or unin-
tentional facial expressions) is needed to advance this vision.

We envision that wireless EEG headsets will become cheaper
and more robust and that machine learning techniques de-
veloped for high end research-grade wired EEG headsets [4]
can be effectively exploited by resource limited phones. As
this vision gathers speed and noise issues are solved, EEG
will be integrated into wearable fabric (e.g., baseball caps,
woolen hats, bicycle helmets) or become the new wireless
“earphones plus” (i.e., earphones plus a limited set of elec-
trodes). This raises a number of interesting issues. For ex-
ample, the NeuroPhone system relay (discussed later) trans-
mits raw unencrypted neural signals over-the-air to the iPhone
in IP packets. This leads to the notion of insecure “neural
packets everywhere,” opening up important privacy chal-
lenges that need to be addressed.

3. NEUROPHONE DESIGN
We create the NeuroPhone as a means of taking a first

step towards this vision. The NeuroPhone system uses the

Figure 1: NeuroPhone in use

iPhone to display pictures of contacts in the user’s address
book. The pictures are displayed and individually flashed
in a random order. The users concentrate on the picture
of a person they wish to call in the case of the think mode
of our application, called “Dial Tim”. Utilizing the P300
neural signal, NeuroPhone recognizes which person the user
is focused on and calls them. The wink mode is similar to
the think mode but the user simply winks with the left or
right eye to make the intended call. The wink mode relies
on the much more clearly defined muscle movement signals
in the raw EEG data, rather than the much more subtle
neural signals [13]. Figure 1 shows a user with the headset
and phone, and Figure 2 shows the application running. In
what follows, we present an overview of the P300 signal and
the wireless Emotiv EPOC EEG headset used by our Dial
Tim application. We also discuss a number of design consid-
erations that directed our initial implementation discussed
in Section 4.

3.1 P300
When somebody concentrates on a task-specific stimulus

(e.g., a highlighted image in Dial Tim) among a pool of stim-
uli (e.g., non highlighted images), the task-related stimulus
will elicit a positive peak with a latency of about 300ms
from the stimulus onset in subject’s EEG signal. This pos-
itive peak is known as the P300 signal in neuroscience lit-
erature [7]. P300 is emanated in the central-parietal region
of the brain and can be found more or less throughout the
EEG on a number of channels. Figure 4 illustrates such
a P300 signal captured using our headset, where the sig-
nal is bandpass filtered and averaged over multiple trials.
A classic example experiment driven by P300 signals is the
P300 speller [3]. A grid of 6×6 alphanumeric characters
is presented to a subject. The subject focuses on a specific
character, while the rows and columns are randomly flashed.
Whenever a row or column containing that specific character
flashes, a P300 signal is elicited in the subject’s EEG. The
speller then predicts the specific character that the subject
intends to select by determining the row and column that
correspond to P300 signals in the subject’s EEG and takes
the letter at the intersection point. While we focus on the
P300 neural signal as a driver of the Dial Tim application,



Figure 2: The Dial Tim application works on similar principles to P300-speller brain-computer interfaces: the phone flashes a
sequence of photos of contacts from the address book and a P300 neural signal is elicited when the flashed photo matches the
person whom the user wishes to dial. EEG signals from the headset are transmitted wirelessly to an iPhone, which natively
runs a simple classifier to discriminate P300 signals from noise. When a person’s contact-photo triggers a P300, their phone
number is automatically dialed. In this case, the user wants to dial Tim, thus when his picture is flashed, Tim is automatically
dialed.

we plan to study the suitability of other neural signals as
part of on-going work.

3.2 Wireless EEG Headset
We use the Emotiv EPOC headset [2] which has 14 data-

collecting electrodes and 2 reference electrodes (see Figures
6, 3, and 1). The electrodes are placed in roughly the in-
ternational 10-20 system and are labeled as such [9]. The
headset transmits encrypted data wirelessly to a Windows-
based machine; the wireless chip is proprietary and oper-
ates in the same frequency range as 802.11 (2.4Ghz). The
software that comes with the Emotiv headset provides the
following detection functionality: various facial expressions
(referred to as “Expressiv” by Emotiv); levels of engage-
ment, frustration, meditation, and excitement (“Affectiv”);
subject-specific training and detection of certain cognitive
neuro-activities such as “push”, “pull”, “rotate”, and “lift”
(“Cognitiv”) [2]. Also built in the headset is a gyroscope
that detects the change of orientation of subject’s head. The
headset is not meant to be an extremely reliable device, thus
it is challenging to extract finer P300 signals from the EEGs
this headset produces. But, as we state in our vision, this
headset can be easily deployed at large scale because of its
low price, and can be extremely handy if we can extract
useful signals (e.g., P300) from it through smart signal pro-
cessing and classification algorithms running on the phone.

3.3 Design Considerations
In what follows, we discuss a number of design consider-

ations that relate to building a reliable and robust Neuro-
Phone system.

Signal to Noise Ratio (SNR): Since the Emotiv head-
set is not intended for finer signal detection, there is more
noise than usual on every electrode of the EEG. To com-
pound this issue, EEG’s are relatively noisy to begin with [8].
Assuming that this noise is relatively random, it has the
potential to completely invalidate the data that we use to
detect winks and P300 signals in the first place. We study
various solutions to increase the SNR, such as bandpass fil-
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Figure 3: Raw data from the headset

tering [9] and independent component analysis (ICA) [14].
A sensible approach to increase the SNR is to average the
data over many trials, which is also a commonly used tech-
nique in neuroscience [10]. Naturally, this introduces delay
in the acquisition of a reliable P300 signal, because we need
to average several trials before actually detecting the P300.
However, in wink mode we can avoid averaging because wink
signals (Figure 5) are much more easily detectable in raw
EEG data than P300 signals (Figure 4).

Signal Processing: Although we are averaging data for
a better SNR, we can still improve the EEG signals for better
P300 detection. We use a bandpass filter to get rid of any
noise that is not in the P300 frequency range [14]. Again
this signal processing is unnecessary for wink mode because
wink signals are much more easily detectable in raw EEG
data.

Phone Classifiers: Typically, realtime EEG signal pro-
cessing and classification algorithms are designed for pow-
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Figure 4: Multi-trial averaged bandpass
filtered P300 signal from one electrode.
The difference from the peak of the P300
signal to the background noise is about
6µV
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Figure 5: Unfiltered wink signal from one
electrode. The difference from the peak of
the wink signal to the background noise is
about 140µV
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Figure 6: Electrode positions
on the headset [2]

erful machines, not resource limited mobile phones. For ex-
ample, Lotte et al. [8] use a weighted combination of var-
ious classifiers for EEG classification. These classification
algorithms are not practical to run on the mobile phone
because of power efficiency and resource issues. To ad-
dress this challenge, we combine two approaches for efficient
classification on the phone: i) we do not supply all chan-
nels from the headset to the phone for classification, rather,
only the relevant subset of EEG channels; and ii) we imple-
ment lightweight classifiers, more specifically, a multivariate
equal-prior Bayesian classifier is used for wink mode and a
simple decision stump is used for the think mode.

EEG Headset

Decryption

Forward

Preprocessing

Classification

Application

Laptop Relay Mobile Phone

Figure 7: NeuroPhone system architecture

4. IMPLEMENTATION
In this section, we discuss the implementation details of

the wink mode and the think mode for the Dial Tim ap-
plication. Due to the fact that the headset only transmits
encrypted data wirelessly and this data can be decrypted
solely by Emotiv’s closed-source SDK on a Windows ma-
chine, we use a laptop to relay the raw EEG data to the
phone through WiFi. Upon receiving the EEG data, the
phone carries out all the relevant signal processing and clas-
sification. The headset samples all channels at 128 sam-
ples/second, each of which is a 4-byte floating-point num-
ber corresponding to the voltage of a single electrode. The

data rate of the EEG data streamed from the relay laptop
to the mobile phone is 4kbps per channel. For each appli-
cation mode, only relevant channels are streamed. Figure
7 shows the current system architecture. The phone uses
simple machine learning techniques to determine user input
(wink/non-wink or P300/non-P300). For the wink mode, we
reverse mount the headset and only use the channels which
are directly above the subject’s eyes, i.e., O1 and O2. We de-
velop a data collection program where the subject can easily
label each wink. A multivariate Bayesian classifier is then
trained and used for classification. We set equal-prior such
that it will not be biased toward either wink or non-wink
classes. In the preprocessing step, we calculate variances
over a 90% overlapping sliding window of the two channels.
The variances are used as features and are fed to the clas-
sifier in the classification stage. During the offline training
phase, 2D Gaussian distributions are estimated for both the
wink and non-wink class, as illustrated in Figure 8. The
two Gaussians are mostly separated, which results in good
online classification performance.

For the think mode of the application, which utilizes the
P300 signal, we attempt to use similar 2D Gaussians. How-
ever, the distributions of the classes prove to be too over-
lapped for reasonable classification. As discussed in the de-
sign consideration section, to cancel out unnecessary noise
we preprocess the data by filtering it with a 0-9Hz bandpass
filter and averaging the signal over multiple trials. We do
this preprocessing separately for all 6 stimuli corresponding
to the six images of the Dial Tim application. Following
this we only crop the signal segment that corresponds to the
highest peak value at around 300ms after the stimulus onset.
For classification, we use a decision stump whose threshold
is set to the maximum value among the cropped signal seg-
ments for all 6 images.

5. EVALUATION
To evaluate our system, we test the wink and think modes

in a variety of scenarios (e.g., sitting, walking) using two
different Emotiv headsets and three different subjects. In
what follows, we discuss our initial results.

For the wink mode, we collect multiple sessions of data
from all subjects while they sit relaxed or walk, then train
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Figure 8: Gaussians for winks and non-winks

an equal-prior Bayesian classifier using a set of five sessions
of data from a single subject sitting relaxed. This classifier
is then applied to the rest of the data to test whether it can
generalize to unseen data by calculating the classification
precision (i.e., percentage of classified “winks” that are ac-
tually real winks), recall (i.e., percentage of real winks that
are actually classified as winks) and accuracy (i.e., percent-
age of all events that are correctly classified). The exper-
iment results are shown in Table 1. As can be seen from
the table, the classifier performs well on data collected for
sitting-relaxed scenarios but walking results in a decline in
performance. The decline of recall suggests that while the
subjects are walking, a small amount of blinks are contam-
inated such that the classifier fails to pick them up; thus,
representing false negatives. There is a larger decline in
precision, which suggests that in additional to the increase
in false negatives reflected by the recall, there is also a in-
crease in false positives; noisy peaks in EEG data caused by
walking are erroneously picked up by the classifier as blinks.
Despite the performance decline of the wink classifier when
applied to more noisy data, we can, however, still observe
that it is robust in reasonably noisy scenarios.

Sitting Relaxed Walking
Precision 92.35% 86.15%
Recall 99.39% 96.70%
Accuracy 95.58% 92.58%

Table 1: Wink classification results

For think mode, we test on the same set of subjects. We
carry out the P300 experiments with the subjects using the
Dial Tim application while sitting still, sitting with loud
background music, and standing up. We average the data
over a set time interval. The accuracy values of the exper-
iments are shown in Table 2. First, the accuracy increases
as the data accumulation time increases, which coincides
with the intuition that averaging over more data improves
the SNR for the expected P300 signals, leading to higher

accuracy. Second, P300 signals are quite susceptible to ex-
ternal noise, illustrated by the fact that when subjects are
sitting still, we have the best accuracies, whereas accuracy
decreases when considerable auditory noise is introduced.
Accuracy further declines when the subjects stand up, which
potentially adds more noise due to subjects’ muscle controls
and physical movements. Finally, even though different ex-
periment settings result in different P300 detection accura-
cies, more data accumulation and averaging generally yields
better detection accuracies.

Time Sitting Music (Sitting) Standing
20s 77.78% 44.44% 33.33%
50s 77.82% 66.67% 66.67%
100s 88.89% 88.89% 66.67%

Table 2: Think classification accuracies. Times in the first
column indicate the different time durations of data accumu-
lation for averaging. Contact pictures are flashed once every
half a second in random order; each of the 6 pictures has a
1/6 chance for each flash. Accuracy measures the propor-
tion of correctly classified sessions. Note that chance level
classification accuracy would be 1/6 ≈ 16.67%.

While our initial results are promising for a limited set of
scenarios many challenges remain. Currently, to get usable
P300 signals from the user, we need to average their data
over a large number of trials. This is typically how neural
signals are handled. However, this general “unresponsive-
ness” of the system proves to be rather frustrating for the
end user. There has been recent works on single-trial classi-
fication of EEG data [5, 10]. We are currently investigating
how to reliably carry out classification using such single-
trial data approaches. We also carry out P300 experiments
while subjects are walking and driving which yields low ac-
curacies due to noise. We plan to study the application of
different processing and classification algorithms capable of
dealing with large induced noise from such activities. The
CPU usage for our application on the iPhone is 3.3%, and
the total memory usage is 9.40MB, of which 9.14MB are
for GUI elements, meaning that the actual preprocessing
and classification components of our application are quite
lightweight, using minimal amounts of memory. However,
continuous use of NeuroPhone streaming raw EEG channels
to the phone using WiFi and running processing and clas-
sification pipelines would lead to battery drain. We plan to
study duty cycling the phone to solve this problem.

6. RELATED WORK
There is a limited amount of related work in this area. A

number of groups [3, 5, 14] use research/professional-quality
EEG devices that offer higher quality signals but are expen-
sive and based on wired headsets. In contrast, consumer-
oriented EEG headsets [2, 11, 12] are considerably cheaper
and noisier, but at the same time are more geared toward
gaming applications rather than the types of classification
we have used them for. Typically, these headsets are wire-
less, enabling mobile uses. [6,11] are more closely related to
NeuroPhone. [6] develops a wireless EEG headband proto-
type with 4 electrodes targeting non-hairy skin area of the
forehead, which is not suitable for P300 detection. [11] is a
commercially available headset with a single electrode not



powerful enough for the types of applications we have in
mind such as Dial Tim. These projects connect neural sig-
nals to mobile phones just to display visualization and simple
frequency-domain analysis of the signal, not to drive mobile
applications themselves. In essence, the phone is used as a
mobile display and not as a phone.

7. CONCLUSION
We have presented the evaluation of an initial prototype

that brings together neural signals and phones to drive mo-
bile applications in new ways. One could argue that con-
necting the wireless Emotiv EPOC EEG headset and iPhone
is just a simple engineering exercise. We believe the Neu-
roPhone system is an important development precisely be-
cause it is simple to engineer using cheap but noisy com-
mercial components. NeuroPhone opens up new opportuni-
ties and challenges in ubiquitous sensing and pervasive com-
puting. For example, sniffing packets could take on a very
new meaning if brain-mobile phone interfaces become widely
used. Anyone could simply sniff the packets out of the air
and potentially reconstruct the “thoughts” of the user. Spy-
ing on a user and detecting something as simple as them
thinking yes or no could have profound effects. Thus, secur-
ing brain signals over the air is an important challenge.
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