dopetalk does not endorse any advertised product nor does it accept any liability for it's use or misuse

This website has run out of funding so feel free to contribute if you can afford it (see footer)

Author Topic: A new antiviral drug heading into clinical trials offers hope for COVID-19  (Read 4655 times)

Offline Chip (OP)

  • Server Admin
  • Hero Member
  • *****
  • Administrator
  • *****
  • Join Date: Dec 2014
  • Location: Australia
  • Posts: 6648
  • Reputation Power: 0
  • Chip has hidden their reputation power
  • Gender: Male
  • Last Login:Today at 05:53:23 PM
  • Deeply Confused Learner
  • Profession: IT Engineer
source: https://neurosciencenews.com/coronavirus-antiviral-16088/

A new antiviral drug heading into clinical trials offers hope for COVID-19

The drug can prevent severe lung injury in mouse models and cultured human lung cells infected with COVID-19.

April 6, 2020

Summary: EIDD-2801, a new antiviral drug, has the potential to treat coronavirus. A new study reveals the drug can prevent severe lung injury in mouse models and cultured human lung cells infected with COVID-19. The drug will soon be ready for human testing.

Source: University of North Carolina at Chapel Hill

Scientists are hopeful that a new drug — called EIDD-2801 — could change the way doctors treat COVID-19. The drug shows promise in reducing lung damage, has finished testing in mice and will soon move to human clinical trials.

As of April 3, the novel coronavirus SARS-CoV-2 had infected more than 1 million people with COVID-19 and caused more than 58,000 deaths in a worldwide pandemic. Currently, no antiviral drugs have been approved to treat SARS-CoV-2 or any of the other coronaviruses that cause human disease.

Researchers at the UNC-Chapel Hill Gillings School of Global Public Health are playing a key role in the development and testing of EIDD-2801. Virologists in the lab of William R. Kenan Jr. Distinguished Professor of epidemiology Ralph Baric, are working with colleagues in the lab of Mark Denison, Edward Claiborne Stahlman Professor of pediatrics at Vanderbilt University Medical Center (VUMC), and with George Painter, chief executive officer of the nonprofit DRIVE (Drug Innovation Ventures at Emory) and director of the Emory Institute for Drug Development (EIDD), where EIDD-2801 was discovered.

The results of the team’s most recent study were published online April 6 by the journal Science Translational Medicine. The paper includes data from cultured human lung cells infected with SARS-CoV-2, as well as mice infected with the related coronaviruses SARS-CoV and MERS-CoV.

The study found that, when used as a prophylactic, EIDD-2801 can prevent severe lung injury in infected mice. EIDD-2801 is an orally available form of the antiviral compound EIDD-1931; it can be taken as a pill and can be properly absorbed to travel to the lungs.

When given as a treatment 12 or 24 hours after infection has begun, EIDD-2801 can reduce the degree of lung damage and weight loss in mice. This window of opportunity is expected to be longer in humans, because the period between coronavirus disease onset and death is generally extended in humans compared to mice.

“This new drug not only has high potential for treating COVID-19 patients, but also appears effective for the treatment of other serious coronavirus infections,” said senior author Baric.
[/font][/size]

Compared with other potential COVID-19 treatments that must be administered intravenously, EIDD-2801 can be delivered by mouth as a pill. In addition to ease of treatment, this offers a potential advantage for treating less-ill patients or for prophylaxis — for example, in a nursing home where many people have been exposed but are not yet sick.

“We are amazed at the ability of EIDD-1931 and -2801 to inhibit all tested coronaviruses and the potential for oral treatment of COVID-19. This work shows the importance of ongoing National Institutes of Health (NIH) support for collaborative research to develop antivirals for all pandemic viruses, not just coronaviruses” said Andrea Pruijssers, the lead antiviral scientist in the Denison Lab at VUMC.

Denison was senior author of a December 2019 study that first reported that EIDD-1931 blocked the replication of a broad spectrum of coronaviruses.



The study found that, when used as a prophylactic, EIDD-2801 can prevent severe lung injury in infected mice. EIDD-2801 is an orally available form of the antiviral compound EIDD-1931; it can be taken as a pill and can be properly absorbed to travel to the lungs. The image is credited to Mary Lide Parker/UNC Research.

These interinstitutional collaborators, supported by an NIH grant through the University of Alabama at Birmingham, also performed the preclinical development of remdesivir, another antiviral drug currently in clinical trials of patients with COVID-19. In the new Science Translational Medicine paper, Maria Agostini, a postdoctoral fellow in the Denison lab, demonstrated that viruses that show resistance to remdesivir experience higher inhibition from EIDD-1931.

“Viruses that carry remdesivir resistance mutations are actually more susceptible to EIDD-1931 and vice versa, suggesting that the two drugs could be combined for greater efficacy and to prevent the emergence of resistance,” said Painter.

Clinical studies of EIDD-2801 in humans are expected to begin later this spring. If they are successful, the drug could not only be used to limit the spread of SARS-CoV-2, but also could control future outbreaks of other emerging coronaviruses.

“With three novel human coronaviruses emerging in the past 20 years, it is likely that we will continue to see more,” said first author Timothy Sheahan, a Gillings assistant professor of epidemiology and a collaborator in the Baric Lab. “EIDD-2801 holds promise to not only treat COVID-19 patients today, but to treat new coronaviruses that may emerge in the future.”


About this COVID-19 research article

Source:
University of North Carolina at Chapel Hill

Media Contacts:
Jeni Cook – University of North Carolina at Chapel Hill

Image Source:
The image is credited to Mary Lide Parker/UNC Research.

Original Research: Open access
“An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice”. Timothy P. Sheahan, Amy C. Sims, Shuntai Zho, Rachel L. Graham, Andrea J. Pruijssers, Maria L. Agostini, Sarah R. Leist, Alexandra Schäfer, Kenneth H. Dinnon III, Laura J. Stevens, James D. Chappell, Xiaotao Lu, Tia M. Hughes, Amelia S. George, Collin S. Hill, Stephanie A. Montgomery, Ariane J. Brown, Gregory R. Bluemling, Michael G. Natchus, Manohar Saindane, Alexander A. Kolykhalov, George Painter, Jennifer Harcourt, Azaibi Tamin, Natalie J. Thornburg, Ronald Swanstrom, Mark R. Denison, Ralph S. Baric.
Science Translational Medicine doi:10.1126/scitranslmed.abb5883.

Abstract

An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Herein, we show that the ribonucleoside analog β-D-N4-hydroxycytidine (NHC, EIDD-1931) has broad spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c Bat-CoVs, as well as increased potency against a coronavirus bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC-prodrug (β-D-N4-hydroxycytidine-5′-isopropyl ester), improved pulmonary function, and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple coronaviruses and oral bioavailability highlight its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic coronaviruses.

friendly
0
funny
0
informative
0
agree
0
disagree
0
like
0
dislike
0
No reactions
No reactions
No reactions
No reactions
No reactions
No reactions
No reactions
Our Discord Server invitation link is https://discord.gg/jB2qmRrxyD

Tags:
 

Related Topics

  Subject / Started by Replies Last post
0 Replies
7758 Views
Last post August 03, 2015, 07:57:59 PM
by Chip
1 Replies
5863 Views
Last post October 20, 2015, 12:31:41 PM
by Riddick
0 Replies
2190 Views
Last post October 17, 2016, 02:57:44 PM
by Chip
0 Replies
4559 Views
Last post October 03, 2018, 07:42:41 AM
by MoeMentim
0 Replies
3290 Views
Last post May 27, 2019, 06:44:19 PM
by Chip
1 Replies
6986 Views
Last post April 24, 2020, 09:03:47 AM
by dysmorphic
0 Replies
4980 Views
Last post March 28, 2020, 06:17:41 AM
by Chip
0 Replies
4647 Views
Last post April 08, 2020, 09:04:56 AM
by Chip
0 Replies
5531 Views
Last post April 09, 2020, 05:57:26 AM
by Chip
0 Replies
5481 Views
Last post May 01, 2020, 10:24:12 AM
by Chip


dopetalk does not endorse any advertised product nor does it accept any liability for it's use or misuse





TERMS AND CONDITIONS

In no event will d&u or any person involved in creating, producing, or distributing site information be liable for any direct, indirect, incidental, punitive, special or consequential damages arising out of the use of or inability to use d&u. You agree to indemnify and hold harmless d&u, its domain founders, sponsors, maintainers, server administrators, volunteers and contributors from and against all liability, claims, damages, costs and expenses, including legal fees, that arise directly or indirectly from the use of any part of the d&u site.


TO USE THIS WEBSITE YOU MUST AGREE TO THE TERMS AND CONDITIONS ABOVE


Founded December 2014
SimplePortal 2.3.6 © 2008-2014, SimplePortal